- canonical isomorphism
- мат.канонический изоморфизм
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Canonical — is an adjective derived from . Canon comes from the Greek word kanon , rule (perhaps originally from kanna reed , cognate to cane ), and is used in various meanings. Basic, canonic, canonical : reduced to the simplest and most significant form… … Wikipedia
Canonical bundle — In mathematics, the canonical bundle of a non singular algebraic variety V of dimension n is the line bundle which is the nth exterior power of the cotangent bundle Ω on V. Over the complex numbers, it is the determinant bundle of holomorphic n… … Wikipedia
Musical isomorphism — In mathematics, the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle TM and the cotangent bundle T*M of a Riemannian manifold given by its metric. There are similar isomorphisms on symplectic manifolds.… … Wikipedia
Limit (category theory) — In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint… … Wikipedia
Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the … Wikipedia
Product (category theory) — In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the cartesian product of sets, the direct product of groups, the direct… … Wikipedia
Coproduct — This article is about coproducts in categories. For coproduct in the sense of comultiplication, see Coalgebra. In category theory, the coproduct, or categorical sum, is the category theoretic construction which includes the disjoint union of sets … Wikipedia
Pontryagin duality — In mathematics, in particular in harmonic analysis and the theory of topological groups, Pontryagin duality explains the general properties of the Fourier transform. It places in a unified context a number of observations about functions on the… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Solder form — In mathematics, more precisely in differential geometry, a soldering (or sometimes solder form) of a fibre bundle to a smooth manifold is a manner of attaching the fibres to the manifold in such a way that they can be regarded as tangent.… … Wikipedia
Signature of a knot — The signature of a knot is a topological invariant in knot theory. It may be computed from the Seifert surface.Given a knot K in the 3 sphere, it has a Seifert surface S whose boundary is K . The Seifert form of S is the pairing phi : H 1(S) imes … Wikipedia